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a b s t r a c t 

Class Incremental Learning (CIL), an indispensable ability for open-world applications such as service 

robots, has received increasing attention in recent years. Although many CIL methods sprouted out, re- 

searchers usually adopt default class orders, leaving the characteristics of different class orders less vis- 

ited. In this paper, we rethink class orders in CIL from the following aspects: first, we show from prelimi- 

nary studies that class orders do have an impact on the performance, and mainstream episodic memory- 

based CIL methods generally favor an interleaved way of arranging class orders; then, we interpret the 

phenomena above with transferability and propose transferability measures of class orders, which are in 

line with the method performance under different class orders; based on that, we propose a Class Order 

Search Algorithm (COSA) to obtain an optimal class order by finding which one has almost the high- 

est transferability. Experiments on Group ImageNet and iNaturalist verify the importance of class orders 

in CIL methods, and demonstrate the effectiveness of our proposed transferability measures and COSA. 

These findings may help raise more attention to the hardly visited class orders in CIL. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Learning is inherently an incremental process, and one may 

earn something earlier or later than another. According to psychol- 

gy, the learning sequence of materials does have an impact on 

he learning performance, and it is usually believed that learning 

ifferent materials alternatively (i.e. interleaved learning ) is better 

han concentrating on one material until it is mastered and mov- 

ng to the next one (i.e. blocked learning ) [1,2] . To exemplify it, let

s consider two sequences AABB and ABAB where A and B de- 

ote two different learning materials. Then, the conclusion above 

ndicates that people who learn in an ABAB way perform better in 

hese two tasks. The reasons are two-fold: on the one hand, be- 

ng exposed to the same material constantly may get the learner 

ustomed to it and there is decreasing attention and knowledge 

ain; on the other, ABAB enables the learner to review the materi- 

ls occasionally to alleviate forgetting. Probably because interleaved 
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earning is more effective, the curriculum in schools or universities 

s arranged in an interleaved fashion. 

Incremental Learning (IL) , one of the most prosperous fields in 

achine learning that mimics the ongoing learning ability of hu- 

ans, also faces a problem with the order of learning. To analyze 

t in a more pure setting, we focus on the most thriving and chal- 

enging subfield of IL called Class-IL (CIL) , which assumes that sam- 

les of one class or a bunch of classes arrive at a time. In CIL,

he order of how classes arrive (i.e. class order) is seldom visited 

nd researchers usually use the random or certain predefined class 

rders by default. Motivated by the fact in human learning that 

rders do have an impact on the learning performance, a natural 

uestion is whether a similar phenomenon also exists in CIL? Is an 

nterleaved way of arranging class orders generally better (similar 

o human learning)? 

To answer these questions, we first simulate the above- 

entioned interleaved learning and blocked learning in CIL settings 

y leveraging two corresponding class orders denoted as even and 

roup respectively ( Fig. 1 ), where even means that the incoming 

lasses at each incremental phase are evenly distributed over all 

uperclasses, while group implies that the incoming classes at each 

ncremental phase may come from the same superclass. Through 

reliminary studies, we almost constantly observe the superior 

erformance of even for mainstream episodic memory-based CIL 

https://doi.org/10.1016/j.patrec.2022.07.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2022.07.014&domain=pdf
mailto:chen.he@vipl.ict.ac.cn
mailto:wangruiping@ict.ac.cn
mailto:xlchen@ict.ac.cn
https://doi.org/10.1016/j.patrec.2022.07.014
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Fig. 1. Illustration of two typical class orders group and even (left). Both have the same target class group in the final incremental phase. For each incremental phase, there 

may be higher transferability (thicker arrow in the figure) between the previous and next batch of classes in even due to the higher similarity between these two batches. 

Thus, the total transferability in even is higher than group (right). 
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ethods ( Section 4.2 ), which is consistent with the superiority of 

nterleaving learning in psychology mentioned above. 

To gain a deeper understanding of such phenomena, we resort 

o tools of transferability. Our intuition is that seen classes at adja- 

ent incremental phases for even are more similar and it is easier 

o transfer from one group to another, which probably accounts 

or the superiority of even . To verify it, we propose transferability 

easures defined on class orders to reflect the difficulty of con- 

inually transferring from old to new classes along the class or- 

er ( Section 3.3 ), and the estimated transferability is in line with 

he above-mentioned performance of even and group (i.e. even with 

igher transferability outperforms group ) ( Section 4.3 ). Based on 

he transferability measures, the optimal class order 1 with almost 

he highest transferability can be obtained via a Class Order Search 

lgorithm (COSA) ( Section 3.4 ), and the performance of episodic 

emory-based CIL methods under this searched class order can be 

n par or higher than those under even , which is a handcrafted 

lass order that leads to the best performance observed so far on 

hese datasets ( Section 4.4 ). Further analyses by ablating the com- 

on techniques in these episodic memory-based CIL methods of- 

er the reason why they favor even ( Section 4.5 ). With all these

ndings, we discuss possible improvements and applications of the 

echniques introduced in this paper ( Section 4.6 ), and call for more 

ttention to the less visited problems of class orders in CIL. 

. Related works 

Incremental learning Incremental learning (IL) [3,4] , the ability 

f learning algorithms to continually incorporate new information 

ithout forgetting old knowledge, has received tremendous atten- 

ion in the last few years [5,6] . In the large spectrum of IL, Task-IL,

omain-IL, and Class-IL (CIL) are what most researchers focus on, 

nd CIL is generally believed to be the most difficult and realistic 

ne of the three [7,8] . Thus, our work also revolves around CIL. The

ajor problem that often co-occurs with CIL is catastrophic forget- 

ing [9] , where learning new information may completely disrupt 

ld knowledge. While a plethora of IL works with novel mecha- 

isms sprouted up in the last few years, what proved effective in 

IL is still leveraging an additional memory to alleviate forgetting: 

ither via generative memory [10–13] or episodic memory [14–19] . 
1 The optimal class order throughout this paper means the class order with the 

ighest transferability instead of the class order that leads to optimal performance 

or CIL methods. 

g

s

o

c

68 
ur work focuses on the mainstream episodic memory-based CIL 

ethods that store old exemplars since these methods are simple 

nd effective. We analyze their characteristics under different class 

rders. 

Orders in machine learning Existing works in machine learning 

nalyze three types of orders: sample orders, task orders , and class 

rders . As for sample orders , curriculum learning [20] learns “easy”

amples first for better convergence based on the expert knowl- 

dge of “easiness”, and Self-Paced Learning [21] improves it by let- 

ing the model automatically learn “easiness” of the samples with- 

ut any expert knowledge. As for task orders , active task selec- 

ion [22] and task curriculum learning [23] are typical works that 

ocus on arranging the task orders for better overall performance 

n all tasks either based on task relatedness or information maxi- 

ization. This work [24] introduces the problem of task-order sen- 

itivity and proposes an order-robust approach that decomposes 

he network parameters into shared and sparse task-adaptive pa- 

ameters. As for class orders , there are few works [5,25] and the 

ork of Masana et al. [25] is most related to ours that states that 

lass orders may affect the performance of CIL methods. However, 

here are huge differences in the aim and implementation: that 

ork [25] observes unsteady performance of CIL methods under 

any different class orders, and stresses the importance of using 

ultiple class orders to test the CIL method’s robustness. Our work 

ainly focuses on two typical class orders even and group that con- 

orm to interleaved and blocked learning in human learning, and 

bserves almost consistent superiority of an interleaved way of ar- 

anging class orders. It inspires us to imitate the interleaving char- 

cteristic in even and search for the class order with almost the 

ighest transferability, which is hardly covered by Masana et al. 

25] . Moreover, we perform more in-depth analyses of why these 

ethods favor even by ablating common techniques in these meth- 

ds ( Section 4.5 ). 

Transferability Transferability, the difficulty of a model to trans- 

er from one task to another, is fundamental to transfer learn- 

ng [26] and other downstream tasks that rely on transfer learning 

ncluding few-shot learning [27] , incremental learning [28] etc. As 

ong as the transferability among tasks is correctly estimated, we 

an know which tasks can be easily fine-tuned from a pre-trained 

odel, or which source model is optimal to transfer onto a tar- 

et task. Since transferability is usually defined between tasks, CIL 

eems a little irrelevant since there is no acknowledged concept 

f tasks in CIL. In this paper, we treat the classification of all seen 

lasses at each incremental phase as a task. Therefore, a class order 
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ill lead to a sequence of correlated tasks where the classes may 

e overlapped among tasks. To estimate the transferability among 

asks in CIL, we propose novel transferability measures to estimate 

he difficulty to transfer from the previous class group to the next 

ne. The main reason for not using existing transferability mea- 

ures [29,30] is that our proposed one is made of class-class dis- 

ances, making it easier to perform a class order search algorithm 

o be elaborated in Section 3 . 

. Method 

As mentioned in Section 1 , the experimental results that even 

utperforms group will be elaborated in Section 4.2 and we simply 

resume that the phenomena are known in this section. To inter- 

ret these phenomena, we resort to transferability measures de- 

ned on class orders. Specifically, we first define the transferabil- 

ty measure between two classes based on the visual or seman- 

ic distance, 2 then define the transferability measure between two 

onsecutive tasks (i.e. class groups) using a “sigma-min” that ag- 

regates the transferability among all class pairs, and finally sum 

hem up over all incremental phases. With the transferability mea- 

ure on class orders defined, we can obtain the optimal class order 

ith the highest transferability by applying a search algorithm. We 

ill start with the CIL formulation first. 

.1. CIL formulation 

CIL assumes that samples of a class or a batch of classes ar- 

ive at a time. For simplicity, we assume that exactly K classes are 

dded at a time and there are totally T class increments, which 

mplies that the dataset has T K classes [14] . X (c) 
tr and X (c) 

ts are 

he training and test samples of class c ( c ∈ { 1 , . . . , T K} ) respec-

ively. At time t ( t ∈ { 1 , . . . , T } ), the model needs to learn new

lasses { X ((t−1) K+1) 
tr , . . . , X (tK) 

tr } , and the objective is to achieve ideal 

lassification results on the test set of the seen tK classes, i.e. 

 X (1) 
ts , X (2) 

ts , . . . , X (tK) 
ts } . For simplicity, we denote the label space

t time t as Y t which consists of the labels of all seen classes. 

ence, we have Y t ⊂ Y t+1 (t ∈ { 1 , . . . , T − 1 } ) . Since discarding all

ld samples when learning new classes leads to severe catastrophic 

orgetting, researchers usually maintain an extra memory with 

 fixed budget M to store old exemplars (i.e. episodic memory- 

ased) [14,15] . 

.2. Class pair transferability measure 

We use distance d (i, j ) to reflect the transferability between 

lass i and j, and provide different choices as follows. Since se- 

antically similar classes may share more commonalities and are 

asier to transfer to each other (e.g. two kinds of dogs), we lever- 

ge the Wu–Palmer distance [31] based on the WordNet hierar- 

hy [32] that reflects the semantic relatedness between words: 

 wup (i, j) = 1 − 2 × depth (lcs ( s i , s j )) 

depth ( s i ) + depth ( s j ) 
(1) 

In Eq. (1) , s i and s j are the synsets 3 for class i and j respec-

ively. depth (·) is the depth of the synset in the WordNet hierar- 

hy, and lcs (·, ·) is the Lowest Common Ancestor (LCS) of the two

iven synsets. The Wu–Palmer distance takes both path distance in 

 taxonomy and class granularity into account, making it a reason- 

ble hierarchical distance. Other semantic distances based on word 

mbeddings or knowledge graphs can also be used, which is be- 

ond the scope of this work. 
2 Strictly speaking, the distance reflects the non-transferability. 
3 A group of synonymous words. n

69 
Since the semantic distance does not consider image samples, 

t may be less accurate than visual distances that reflect the actual 

istribution. As for visual distances, we first choose a feature space 

hat can be obtained via self-supervised learning or supervised 

earning (more information in Section 4 ), and then take the com- 

on assumption that the features of each class obey a multivari- 

te Gaussian distribution. Thus, a broad spectrum of statistical dis- 

ances between the feature distributions of two classes has easy- 

o-compute closed forms. For example, given the feature distribu- 

ions of two classes N ( μi , �i ) and N ( μ j , � j ) , the 2-Wasserstein

istance (WD) is defined as [33] : 

 W D (i, j) = ‖ μi − μ j ‖ 

2 
2 + ‖ �1 / 2 

i 
− �1 / 2 

j 
‖ 

2 
F (2) 

Wasserstein distance is commonly employed to solve the opti- 

al transport problem [34,35] and has been adopted to estimate 

he transferability between two datasets [36] etc. Moreover, in- 

pired by the success of a combination of Mahalanobis Distance 

MD) between class means and Log-Euclidean Distance (LED) be- 

ween covariance matrices in image set classification [37] , we de- 

ne MD-LED distance by adding them 

4 : 

 MD −LED (i, j) = ( μi − μ j ) 
T ( �−1 

i + �−1 
j )( μi − μ j ) 

+ ‖ log ( �i ) − log ( � j ) ‖ 

2 
F 

(3) 

In Eq. (3) , log ( �) is defined as log ( �) = U log ( �) U 

T , where �
nd U are the diagonal matrix of the eigenvalue logarithms and 

he orthogonal matrix in eigen-decomposition respectively. 

The reasons for choosing the two visual distances above are: 

D has been adopted in transfer learning [36] and LED has been 

sed in domain adaptation [38] , which are both related to trans- 

erability. Other distances related to transfer learning or domain 

daption (e.g. MMD [39] ) can also be used. 

.3. Class order transferability measure 

After defining the transferability measure between two classes, 

he transferability measure between class groups Y t and Y t+1 de- 

oted as S t → t +1 can be defined as the following “sigma-min” form 

imilar to the Chamfer distance: 

 t → t +1 = 

∑ 

j∈Y t+1 

min 

i ∈Y t 
d ( i, j ) (4) 

In Eq. (4) , i and j stands for a class from the tth class group

 t and the (t + 1) th class group Y t+1 respectively. d (i, j ) can be

hosen from the distances defined in Section 3.2 (i.e. Eqs. (1) –(3) ). 

he intuition is that for each new class we find the most similar 

ld class and calculate the distance between them, then we sum 

he distances over all new classes. Such a form is easy to compute 

nd the corresponding algorithm to solve the optimal class order 

o be mentioned next is rather simple. 

Consequently, the class order transferability measure S is: 

 = 

∑ T −1 
t=1 S t → t +1 (5) 

Eq. (5) simply sums up Eq. (4) over T − 1 time steps. Since S
s a distance-based measure, a smaller value of S indicates higher 

ransferability of the class order. 

.4. Class order search algorithm (COSA) 

Given the class order transferability measure in Eq. (5) , the 

roblem to find the optimal class order can be formulated as: 
4 Here, we simply add MD and LED. Since MD and LED can have different mag- 

itudes, it would be better to assign different weights when adding them. 
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rg min 

 1 , ... , Y T−1 

∑ T −1 
t=1 

∑ 

j∈Y t+1 
min 

i ∈Y t 
d ( i, j ) 

s.t. Y t ⊂ Y t+1 ( 1 ≤ t ≤ T − 1 ) 
|Y t | = tK ( 1 ≤ t ≤ T ) 

(6) 

Note that Y T is fixed, which is the group of all classes in the

ataset. If we know the previous class groups Y 1 , . . . , Y T −1 , the

lass order can be uniquely determined. 5 Since there are multiple 

ariables of class groups Y t (t ∈ 1 , . . . , T ) that are mutually con- 

trained and lead to numerous combinations, the global optimum 

s intractable. Inspired by the fact that the final class group Y T is 

xed, we can take a reverse greedy search which is to iteratively 

etermine the optimal Y t given Y t+1 : 

rg min 

Y t 

∑ 

j∈Y t+1 
min 

i ∈Y t 
d ( i, j ) 

s.t. Y t ⊂ Y t+1 ( 1 ≤ t ≤ T − 1 ) 
|Y t | = tK ( 1 ≤ t ≤ T ) 

(7) 

Interestingly, such a formulation is almost the same as the ob- 

ective of k-medoid [40] , which is a clustering method similar to 

-means but chooses actual points as centers. The centroids solved 

y k-medoids are exactly the optimal or at least near-optimal Y t 

or Eq. (7) . 

Note that when T = 2 , Eq. (6) degenerates into Eq. (7) and

he reverse greedy search gives the global optimum. However, 

hen T > 2 , the reverse greedy search only yields a local optimum

f Eq. (6) . For those interested in finding a solution closer to the 

lobal optimum when T > 2 , a beam search [41] can be employed.

owever, in our experiments, we find that the solution of the re- 

erse greedy search is good enough, and we do not visit other al- 

orithms in this work and leave it for future works. 

. Experiments 

.1. Experimental setup 

Methods We compare mainstream episodic memory-based CIL 

ethods iCaRL [14] , End-to-End Incremental Learning (EEIL) [15] , 

arge Scale Incremental Learning (LSIL) [16] , IL2M [17] , Weight 

ligning (WA) [42] , post-scaling [19] . The implementation de- 

ails are in the supplementary material. The source code is avail- 

ble at https://github.com/TonyPod/RethinkingClassOrder and http: 

/vipl.ict.ac.cn/zygx/dm/ . 

Datasets We use two datasets Group ImageNet and Group 

Naturalist. Group ImageNet is a 100-class subset of ImageNet 

K [43] introduced by He et al. [19] . It covers 10 superclasses and

ach superclass has exactly 10 classes. Similar to Group ImageNet, 

roup iNaturalist is a 81-class subset of iNaturalist [44] that cov- 

rs 9 superclasses and each superclass has exactly 9 classes. The 

uperclasses in the two datasets are shown in Fig. 2 . The image 

esolution is 64 × 64 for both datasets. More details of these two 

atasets are in the supplementary material. 

Evaluation protocol As for the incremental protocol, we use 

0 × 5 to imply that there are 5 class increments and each class 

ncrement adds 20 new classes. Unless otherwise specified, we use 

0 × 10 for Group ImageNet and 9 × 9 for Group iNaturalist. Note 

hat even or group is a type of class order that can have differ-

nt actual class orders by random shuffling. We report the ac- 

uracies of different methods in the final incremental phase for 

ifferent class orders. To reduce the randomness of a single run, 

he reported results are averaged over 5 different actual orders of 

he corresponding type. For our searched class order, since it is 

niquely determined, we do not average the results over 5 differ- 

nt orders as even or group does. 
5 The order of classes inside a class group is unimportant. 

C

p

70 
.2. Class orders do matter in CIL 

The final classification accuracies of recent CIL methods under 

wo class orders even and group on Group ImageNet are shown 

n Table 1 . From the results, it can be seen that even almost con-

tantly outperforms group for different incremental protocols. Also, 

f there are more class increments, the superiority of even is more 

bvious (“10 × 10” vs. “50 × 2”). In the supplementary material, 

e display more results on Group iNaturalist and the results via 

ifferent hyper-parameters on Group ImageNetwhere we still have 

he conclusion that even almost consistently outperforms group . 

hese results are reminiscent of the phenomenon from psychology 

entioned in Section 1 that interleaved learning (i.e. ABAB) is bet- 

er than blocked learning (i.e. AABB), where the class order of even 

s “dog-1, fish-1, ..., bird-1, dog-2, fish-2, ..., bird-2, ... ” similar to 

he pattern “ABAB” and group is “dog-1, ..., dog-10, fish-1, ..., fish- 

0, ... ” similar to the pattern “AABB”. In Section 4.5 , we provide 

urther analyses of why these methods favor even . 

.3. Relationship with transferability 

In Section 3.3 , we have defined transferability measures for 

lass orders. Here, we show the estimated transferability of even 

nd group to see if they are in line with the performance of CIL 

ethods mentioned in Section 4.2 . As for the semantic similar- 

ty, it can be easily calculated by using the class labels. As for the 

isual similarities, we use two different types of proxy networks 

o extract features: supervised (Sup.) and self-supervised (SS). The 

upervised network is trained on images of all classes and corre- 

ponding labels in the dataset, whereas the self-supervised net- 

ork is only trained on images of all classes via the simple proxy 

ask of rotation prediction [45] . The estimated transferability on 

roup ImageNet is summarized in Table 2 . Note that the estimated 

ransferability based on different distances are non-comparable—

nly the estimated transferability of different class orders using 

he same feature space and distance function is comparable (i.e. 

he values in the same row are comparable). It can be seen that 

ven generally has higher transferability (i.e. lower distance) than 

roup for almost all transferability measures and incremental pro- 

ocols. Also, such a phenomenon is more obvious when there are 

ore class increments (“10 × 10” vs. “50 × 2”), which is in line 

ith the conclusion in Section 4.2 that the superiority of even is 

ore obvious under these situations. In the supplementary ma- 

erial, we show the results on Group iNaturalist and still observe 

hat even generally has higher transferability. Thus, we connect the 

erformance under different class orders with the transferability 

easures, which lays the foundation for COSA. 

.4. Effectiveness of COSA 

In Section 4.2 , we show from experiments that even performs 

etter than group and is among the optimal candidates, thus we 

ope that our searched class order can have comparable or higher 

ransferability than the handcrafted even . In Table 2 , we display the 

stimated transferability of the class order obtained by COSA (de- 

oted as greedy since it takes a greedy search). It can be seen that 

or most cases greedy has higher transferability than even , which 

erifies the effectiveness of COSA. We recommend that the read- 

rs see the visualization of different orders that shows the effec- 

iveness of COSA in the supplementary material. Also, the perfor- 

ance of CIL methods under greedy is comparable to or better than 

hat under even ( Table 3 ), which again verifies the effectiveness of 

OSA. 

From the table, it can be seen that greedy does not always out- 

erform even , and the reasons are two-fold: the reverse greedy 

https://github.com/TonyPod/RethinkingClassOrder
http://vipl.ict.ac.cn/zygx/dm/
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Fig. 2. Simplified hierarchies of Group ImageNet and Group iNaturalist. The classes in red (i.e. leaf nodes in the hierarchies) are the chosen superclasses, each of which has 

10 and 9 subclasses for Group ImageNet and Group iNaturalist respectively. “Aquatic Animals ∗” means that most of the subclasses are aquatic animals. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Classification accuracies (%) of methods with the even and group class order on Group ImageNet. Each result is averaged 

by 5 different actual class orders of the corresponding class order type, and we denote the standard deviation. The class 

order that leads to the better accuracy for different methods under three incremental protocols is highlighted in bold . 

Method 

10 × 10 20 × 5 50 × 2 

even group even group even group 

iCaRL [14] 41 . 47 ± 0 . 46 39.40 ± 1.52 47 . 33 ± 0 . 57 44.38 ± 0.47 53 . 89 ± 0 . 40 52.80 ± 1.21 

EEIL [15] 45 . 79 ± 0 . 35 43.69 ± 0.46 54 . 35 ± 0 . 21 52.68 ± 0.28 65 . 20 ± 0 . 71 64.05 ± 0.76 

LSIL [16] 42 . 56 ± 1 . 35 20.86 ± 4.41 54 . 04 ± 0 . 54 36.94 ± 3.14 63 . 95 ± 0 . 58 61.05 ± 1.53 

IL2M [17] 35 . 72 ± 0 . 67 33.15 ± 0.82 42 . 75 ± 1 . 30 38.98 ± 0.60 54 . 85 ± 0 . 77 53.81 ± 0.79 

WA [42] 46 . 64 ± 0 . 94 43.88 ± 1.06 53 . 88 ± 0 . 64 49.87 ± 1.60 63 . 44 ± 0 . 55 62.82 ± 0.65 

Post-scaling [19] 47 . 42 ± 0 . 44 45.05 ± 0.85 55 . 86 ± 0 . 44 52.86 ± 0.90 66 . 40 ± 0 . 51 65.49 ± 0.76 

Table 2 

Estimated transferability of our searched class order greedy, even and group on Group ImageNet using different CIL protocols. “Sup./SS” is short 

for the supervised/self-supervised feature. The lower, the better. 

Transferability 

measure based on 

10 × 10 20 × 5 50 × 2 

greedy even group greedy even group greedy even group 

WD (Sup.) 5.24 ×10 3 5.25 ×10 3 6.18 ×10 3 4.41 ×10 3 4.55 ×10 3 5.34 ×10 3 2.69 ×10 3 2.73 ×10 3 3.13 ×10 3 

WD (SS) 2.79 ×10 1 2.81 ×10 1 3.38 ×10 1 2.21 ×10 1 2.34 ×10 1 2.99 ×10 1 1.12 ×10 1 1.27 ×10 1 1.48 ×10 1 

MD-LED (Sup.) 3.27 ×10 4 3.37 ×10 4 3.95 ×10 4 2.90 ×10 4 2.88 ×10 4 3.38 ×10 4 1.74 ×10 4 1.72 ×10 4 1.96 ×10 4 

MD-LED (SS) 4.17 ×10 2 4.11 ×10 2 4.83 ×10 2 3.42 ×10 2 3.55 ×10 2 4.28 ×10 2 2.11 ×10 2 2.07 ×10 2 2.27 ×10 2 

Wu–Palmer 1.00 ×10 1 1.00 ×10 1 1.32 ×10 1 8.45 8.73 1.11 ×10 1 4.90 5.31 6.34 

Table 3 

Classification accuracies (%) of methods under the searched class orders by COSA (i.e. greedy ) based on different transferability 

measures on Group ImageNet. The protocol is 10 × 10. We average the accuracies under different greedy in the “average” column. 

We list the accuracies under even and group as references. 

Method 

Searched order based on Reference 

WD (Sup.) WD (SS) MD-LED (Sup.) MD-LED (SS) Wu–Palmer average even group 

iCaRL [14] 41.94 42.00 40.38 40.00 40.64 40.99 41.47 39.40 

EEIL [15] 46.76 46.30 44.72 46.26 45.56 45.92 45.79 43.69 

LSIL [16] 39.34 42.78 41.06 39.88 40.68 40.75 42.56 20.86 

IL2M [17] 35.56 37.12 36.28 35.72 35.94 36.12 35.72 33.15 

WA [42] 45.90 45.60 45.12 45.96 45.86 45.69 46.64 43.88 

Post-scaling [19] 46.74 47.96 46.84 47.78 47.18 47.30 47.42 45.05 
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4

o

earch in COSA only gives a local optimum when T > 2 , mak-

ng the class order a suboptimal one; the transferability may be 

ot the only factor in determining the performance, which will 

e discussed more detailedly in Section 4.6 . The results for a 

0 × 5/50 × 2 incremental protocol on Group ImageNet and a 

 × 9/27 × 3 incremental protocol on Group iNaturalist are shown 

n the supplementary material, which leads to the same conclu- 

ion. Also, among these transferability measures, WD generally 

ives better classification performance. The reasons are two-fold: 

1) As noted in Footnote 4, MD-LED is implemented by simply 

dding MD and LED without weighting factors, which may incur 
e

71 
rrors since these two terms have quite different magnitudes. The 

eighting factors should be carefully chosen, which is left for fu- 

ure works; (2) The Wu–Palmer distance does not consider image 

amples, which may be "less accurate than visual distances that 

eflect the actual distribution" as mentioned in Section 3.2 . 

.5. Further analyses of why class order matters 

The aforementioned analyses of transferability are simply based 

n the dataset and are model-independent. Thus, we may hypoth- 

size that for a black-box CIL method, it is more likely to still fa- 
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Table 4 

Classification accuracies (%) of ablating the techniques in CIL methods on Group ImageNet. Each model is trained for 70 epochs at each incremental 

phase. Each result is averaged over 5 different class orders of the corresponding order type. “w/ distill” means using the distillation loss. “w/ finetune”

means that the new model is fine-tuned from the old one. “Base” is the variant without the two aforementioned techniques. The number inside “()” is 

the improvement of accuracy over “Base”. IL2M does not have the distillation loss, thus there is a “/” in certain elements of the table. 

Method 

Even Group 

Base w/ distill w/ finetune w/ both Base w/ distill w/ finetune w/ both 

iCaRL [14] 30.92 36.60 ( + 5.68) 37.50 ( + 6.58) 41.47 ( + 10.55) 30.46 35.25( + 4.79) 34.79 ( + 4.33) 39.40 ( + 8.94) 

EEIL [15] 32.92 40.57 ( + 7.65) 37.48 ( + 4.56) 45.79 ( + 12.87) 32.31 38.64 ( + 6.33) 36.62 ( + 4.31) 43.69 ( + 11.38) 

LSIL [16] 30.73 38.28 ( + 7.55) 36.40 ( + 5.67) 42.56 ( + 11.83) 22.41 16.10 ( −6.31) 28.90 ( + 6.49) 20.86 ( −1.55) 

IL2M [17] 28.68 / 35.72 ( + 7.04) / 26.56 / 33.15 ( + 6.59) / 

WA [42] 30.00 43.15 ( + 13.15) 32.44 ( + 2.44) 46.64 ( + 16.64) 30.96 40.34 ( + 9.38) 34.76 ( + 3.80) 43.88 ( + 12.92) 

Post-scaling [19] 33.44 42.71 ( + 9.27) 39.14 ( + 5.70) 47.42 ( + 13.98) 32.31 38.88 ( + 6.57) 36.48 ( + 4.17) 45.05 ( + 12.74) 
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or even . However, strictly speaking, the performance under differ- 

nt class orders still depends on the characteristics of the learner. 

hus, we offer further analyses to find out what commonalities 

ake these methods favor even . 

Apart from IL2M that does not have the distillation loss , all 

ther methods share two common techniques that are related to 

nowledge transfer: distillation loss that originates in Li and Hoiem 

28] and fine-tuning from the old model instead of training the new 

odel from scratch. Thus, we ablate these two buildings blocks 

rom these methods to observe their behavior under even and 

roup . The results are shown in Table 4 . It can be seen that “Base”

f almost all methods under even and group does not differ too 

uch in performance by comparing with “w/ distill” or “w/ fine- 

une” except LSIL, which indicates that the distillation loss and fine- 

uning are more sensitive to class orders. By scrutinizing the im- 

rovements of “w/ distill” and “w/ finetune” over “Base”, we find 

hat the phenomenon that the distillation loss favors even is more 

bvious. The reason is that the distillation loss forces the responses 

f the samples on the new model to be similar to those on the 

ld model, which is a kind of review to alleviate forgetting. There- 

ore, the choice of the samples is rather important: if the samples 

re diverse, all previous classes can be reviewed. Since in even the 

amples are spread over all superclasses, it provides a better re- 

iew of old knowledge than group where samples are concentrated 

nside only a few superclasses. Consequently, the distillation loss 

ay be the important cause of the large performance gap for these 

ethods under different class orders. Thus, it is recommended that 

he form of the distillation loss can be adapted, or the weighting 

actor of the distillation loss can be dynamically adjusted based on 

he transferability between the previous and next batch of classes. 

t may lead to more steady behavior of these methods under dif- 

erent class orders. 

.6. Discussions 

Superiority of even . Although we make connections between 

he superiority of interleaving learning (i.e. the interleaving ef- 

ect [2] ) in psychology ( Section 1 ) and the superiority of even in

IL ( Section 4.2 ), it should be noted that experiments of spacing 

ffect are mainly verified via recall or relearning , instead of recogni- 

ion as in CIL. Therefore, the conclusions from human learning and 

achine learning may not be 100% consistent due to a difference 

n the experimental setting. However, we still encourage further 

ollaborations between these two fields, which would bring more 

nsights. 

Transferability and performance . Although we draw connections 

etween transferability and performance in CIL, we should note 

hat too much transferability may also lead to a performance drop. 

or example, a new class Alaskan Malamute and an old class husky 

re two visually similar dogs. Thus, there is higher transferability 

etween these two classes, but they are more likely to be con- 

used by the model. This phenomenon indicates that transferability 
72 
s probably not the only factor to reflect the classification perfor- 

ance, which requires more studies. In the supplementary mate- 

ial, we further discuss the potential applications of the proposed 

ransferability measures and COSA. 

. Conclusion 

In this paper, we revisit class orders in Class Incremental Learn- 

ng (CIL). Specifically, we show from experiments that mainstream 

pisodic memory-based CIL methods favor even class orders, which 

s in line with the superiority of interleaved learning in psychol- 

gy. Then, we draw connections between the performance of these 

ethods with our proposed transferability measures defined on 

lass orders, where higher transferability is correlated with better 

erformance. The transferability measures can also be indicators 

sed to search for the optimal class order by finding which one has 

he highest transferability. Future works are further improving the 

ransferability measures and applying the class order search algo- 

ithm to real-world scenarios mentioned in the discussion section. 
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