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ABSTRACT

Class Incremental Learning (CIL), an indispensable ability for open-world applications such as service
robots, has received increasing attention in recent years. Although many CIL methods sprouted out, re-
searchers usually adopt default class orders, leaving the characteristics of different class orders less vis-
ited. In this paper, we rethink class orders in CIL from the following aspects: first, we show from prelimi-
nary studies that class orders do have an impact on the performance, and mainstream episodic memory-
based CIL methods generally favor an interleaved way of arranging class orders; then, we interpret the
phenomena above with transferability and propose transferability measures of class orders, which are in
line with the method performance under different class orders; based on that, we propose a Class Order
Search Algorithm (COSA) to obtain an optimal class order by finding which one has almost the high-
est transferability. Experiments on Group ImageNet and iNaturalist verify the importance of class orders
in CIL methods, and demonstrate the effectiveness of our proposed transferability measures and COSA.

These findings may help raise more attention to the hardly visited class orders in CIL.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Learning is inherently an incremental process, and one may
learn something earlier or later than another. According to psychol-
ogy, the learning sequence of materials does have an impact on
the learning performance, and it is usually believed that learning
different materials alternatively (i.e. interleaved learning) is better
than concentrating on one material until it is mastered and mov-
ing to the next one (i.e. blocked learning) [1,2]. To exemplify it, let
us consider two sequences AABB and ABAB where A and B de-
note two different learning materials. Then, the conclusion above
indicates that people who learn in an ABAB way perform better in
these two tasks. The reasons are two-fold: on the one hand, be-
ing exposed to the same material constantly may get the learner
customed to it and there is decreasing attention and knowledge
gain; on the other, ABAB enables the learner to review the materi-
als occasionally to alleviate forgetting. Probably because interleaved
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learning is more effective, the curriculum in schools or universities
is arranged in an interleaved fashion.

Incremental Learning (IL), one of the most prosperous fields in
machine learning that mimics the ongoing learning ability of hu-
mans, also faces a problem with the order of learning. To analyze
it in a more pure setting, we focus on the most thriving and chal-
lenging subfield of IL called Class-IL (CIL), which assumes that sam-
ples of one class or a bunch of classes arrive at a time. In CIL,
the order of how classes arrive (i.e. class order) is seldom visited
and researchers usually use the random or certain predefined class
orders by default. Motivated by the fact in human learning that
orders do have an impact on the learning performance, a natural
question is whether a similar phenomenon also exists in CIL? Is an
interleaved way of arranging class orders generally better (similar
to human learning)?

To answer these questions, we first simulate the above-
mentioned interleaved learning and blocked learning in CIL settings
by leveraging two corresponding class orders denoted as even and
group respectively (Fig. 1), where even means that the incoming
classes at each incremental phase are evenly distributed over all
superclasses, while group implies that the incoming classes at each
incremental phase may come from the same superclass. Through
preliminary studies, we almost constantly observe the superior
performance of even for mainstream episodic memory-based CIL
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Fig. 1. Illustration of two typical class orders group and even (left). Both have the same target class group in the final incremental phase. For each incremental phase, there
may be higher transferability (thicker arrow in the figure) between the previous and next batch of classes in even due to the higher similarity between these two batches.

Thus, the total transferability in even is higher than group (right).

methods (Section 4.2), which is consistent with the superiority of
interleaving learning in psychology mentioned above.

To gain a deeper understanding of such phenomena, we resort
to tools of transferability. Our intuition is that seen classes at adja-
cent incremental phases for even are more similar and it is easier
to transfer from one group to another, which probably accounts
for the superiority of even. To verify it, we propose transferability
measures defined on class orders to reflect the difficulty of con-
tinually transferring from old to new classes along the class or-
der (Section 3.3), and the estimated transferability is in line with
the above-mentioned performance of even and group (i.e. even with
higher transferability outperforms group) (Section 4.3). Based on
the transferability measures, the optimal class order' with almost
the highest transferability can be obtained via a Class Order Search
Algorithm (COSA) (Section 3.4), and the performance of episodic
memory-based CIL methods under this searched class order can be
on par or higher than those under even, which is a handcrafted
class order that leads to the best performance observed so far on
these datasets (Section 4.4). Further analyses by ablating the com-
mon techniques in these episodic memory-based CIL methods of-
fer the reason why they favor even (Section 4.5). With all these
findings, we discuss possible improvements and applications of the
techniques introduced in this paper (Section 4.6), and call for more
attention to the less visited problems of class orders in CIL.

2. Related works

Incremental learning Incremental learning (IL) [3,4], the ability
of learning algorithms to continually incorporate new information
without forgetting old knowledge, has received tremendous atten-
tion in the last few years [5,6]. In the large spectrum of IL, Task-IL,
Domain-IL, and Class-IL (CIL) are what most researchers focus on,
and CIL is generally believed to be the most difficult and realistic
one of the three [7,8]. Thus, our work also revolves around CIL. The
major problem that often co-occurs with CIL is catastrophic forget-
ting [9], where learning new information may completely disrupt
old knowledge. While a plethora of IL works with novel mecha-
nisms sprouted up in the last few years, what proved effective in
CIL is still leveraging an additional memory to alleviate forgetting:
either via generative memory [10-13] or episodic memory [14-19].

1 The optimal class order throughout this paper means the class order with the
highest transferability instead of the class order that leads to optimal performance
for CIL methods.
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Our work focuses on the mainstream episodic memory-based CIL
methods that store old exemplars since these methods are simple
and effective. We analyze their characteristics under different class
orders.

Orders in machine learning Existing works in machine learning
analyze three types of orders: sample orders, task orders, and class
orders. As for sample orders, curriculum learning [20] learns “easy”
samples first for better convergence based on the expert knowl-
edge of “easiness”, and Self-Paced Learning [21] improves it by let-
ting the model automatically learn “easiness” of the samples with-
out any expert knowledge. As for task orders, active task selec-
tion [22] and task curriculum learning [23] are typical works that
focus on arranging the task orders for better overall performance
on all tasks either based on task relatedness or information maxi-
mization. This work [24] introduces the problem of task-order sen-
sitivity and proposes an order-robust approach that decomposes
the network parameters into shared and sparse task-adaptive pa-
rameters. As for class orders, there are few works [5,25] and the
work of Masana et al. [25] is most related to ours that states that
class orders may affect the performance of CIL methods. However,
there are huge differences in the aim and implementation: that
work [25] observes unsteady performance of CIL methods under
many different class orders, and stresses the importance of using
multiple class orders to test the CIL method’s robustness. Our work
mainly focuses on two typical class orders even and group that con-
form to interleaved and blocked learning in human learning, and
observes almost consistent superiority of an interleaved way of ar-
ranging class orders. It inspires us to imitate the interleaving char-
acteristic in even and search for the class order with almost the
highest transferability, which is hardly covered by Masana et al.
[25]. Moreover, we perform more in-depth analyses of why these
methods favor even by ablating common techniques in these meth-
ods (Section 4.5).

Transferability Transferability, the difficulty of a model to trans-
fer from one task to another, is fundamental to transfer learn-
ing [26] and other downstream tasks that rely on transfer learning
including few-shot learning [27], incremental learning [28] etc. As
long as the transferability among tasks is correctly estimated, we
can know which tasks can be easily fine-tuned from a pre-trained
model, or which source model is optimal to transfer onto a tar-
get task. Since transferability is usually defined between tasks, CIL
seems a little irrelevant since there is no acknowledged concept
of tasks in CIL. In this paper, we treat the classification of all seen
classes at each incremental phase as a task. Therefore, a class order
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will lead to a sequence of correlated tasks where the classes may
be overlapped among tasks. To estimate the transferability among
tasks in CIL, we propose novel transferability measures to estimate
the difficulty to transfer from the previous class group to the next
one. The main reason for not using existing transferability mea-
sures [29,30] is that our proposed one is made of class-class dis-
tances, making it easier to perform a class order search algorithm
to be elaborated in Section 3.

3. Method

As mentioned in Section 1, the experimental results that even
outperforms group will be elaborated in Section 4.2 and we simply
presume that the phenomena are known in this section. To inter-
pret these phenomena, we resort to transferability measures de-
fined on class orders. Specifically, we first define the transferabil-
ity measure between two classes based on the visual or seman-
tic distance,? then define the transferability measure between two
consecutive tasks (i.e. class groups) using a “sigma-min” that ag-
gregates the transferability among all class pairs, and finally sum
them up over all incremental phases. With the transferability mea-
sure on class orders defined, we can obtain the optimal class order
with the highest transferability by applying a search algorithm. We
will start with the CIL formulation first.

3.1. CIL formulation

CIL assumes that samples of a class or a batch of classes ar-
rive at a time. For simplicity, we assume that exactly K classes are
added at a time and there are totally T class increments, which
implies that the dataset has TK classes [14]. X? and X© are
the training and test samples of class ¢ (ce{1,..., TK}) respec-
tively. At time t (t € {1,...,T}), the model needs to learn new
classes {x\=DKD " x()} and the objective is to achieve ideal
classification results on the test set of the seen tK classes, i.e.
X x@ .. x™) For simplicity, we denote the label space
at time t as ); which consists of the labels of all seen classes.
Hence, we have Y; c Viyq (t e {1,...,T —1}). Since discarding all
old samples when learning new classes leads to severe catastrophic
forgetting, researchers usually maintain an extra memory with
a fixed budget M to store old exemplars (i.e. episodic memory-
based) [14,15].

3.2. Class pair transferability measure

We use distance d(i, j) to reflect the transferability between
class i and j, and provide different choices as follows. Since se-
mantically similar classes may share more commonalities and are
easier to transfer to each other (e.g. two kinds of dogs), we lever-
age the Wu-Palmer distance [31] based on the WordNet hierar-
chy [32] that reflects the semantic relatedness between words:

2 x depth(lcs(s;, s}))
depth(s;) + depth(s;)

dwup(iv.l.)z‘1 - (1)

In Eq. (1), s; and s; are the synsets> for class i and j respec-
tively. depth(-) is the depth of the synset in the WordNet hierar-
chy, and Ics(-, -) is the Lowest Common Ancestor (LCS) of the two
given synsets. The Wu-Palmer distance takes both path distance in
a taxonomy and class granularity into account, making it a reason-
able hierarchical distance. Other semantic distances based on word
embeddings or knowledge graphs can also be used, which is be-
yond the scope of this work.

2 Strictly speaking, the distance reflects the non-transferability.
3 A group of synonymous words.
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Since the semantic distance does not consider image samples,
it may be less accurate than visual distances that reflect the actual
distribution. As for visual distances, we first choose a feature space
that can be obtained via self-supervised learning or supervised
learning (more information in Section 4), and then take the com-
mon assumption that the features of each class obey a multivari-
ate Gaussian distribution. Thus, a broad spectrum of statistical dis-
tances between the feature distributions of two classes has easy-
to-compute closed forms. For example, given the feature distribu-
tions of two classes M(p;, X;) and NV (p;, Xj), the 2-Wasserstein
distance (WD) is defined as [33]:

dwp(i, j) = i — w;ll3 + 152 = 22|12 (2)

Wasserstein distance is commonly employed to solve the opti-
mal transport problem [34,35] and has been adopted to estimate
the transferability between two datasets [36] etc. Moreover, in-
spired by the success of a combination of Mahalanobis Distance
(MD) between class means and Log-Euclidean Distance (LED) be-
tween covariance matrices in image set classification [37], we de-
fine MD-LED distance by adding them®:

dvp-1ep (i, j) = (i — )T (7 + 27 (i — 1)
+]| log(%;) — log(Z;) 12

In Eq. (3), log(X) is defined as log(X) = U log(A)UT, where A
and U are the diagonal matrix of the eigenvalue logarithms and
the orthogonal matrix in eigen-decomposition respectively.

The reasons for choosing the two visual distances above are:
WD has been adopted in transfer learning [36] and LED has been
used in domain adaptation [38], which are both related to trans-
ferability. Other distances related to transfer learning or domain
adaption (e.g. MMD [39]) can also be used.

(3)

3.3. Class order transferability measure

After defining the transferability measure between two classes,
the transferability measure between class groups Y; and ), de-
noted as S;_;,1 can be defined as the following “sigma-min” form
similar to the Chamfer distance:

Siots1= Y, min d(i, j)
jEyHl !

(4)

In Eq. (4), i and j stands for a class from the tth class group
Yr and the (t+ 1)th class group Y,,; respectively. d(i, j) can be
chosen from the distances defined in Section 3.2 (i.e. Egs. (1)-(3)).
The intuition is that for each new class we find the most similar
old class and calculate the distance between them, then we sum
the distances over all new classes. Such a form is easy to compute
and the corresponding algorithm to solve the optimal class order
to be mentioned next is rather simple.

Consequently, the class order transferability measure S is:

S=211 Sen (5)

Eq. (5) simply sums up Eq. (4) over T — 1 time steps. Since S
is a distance-based measure, a smaller value of S indicates higher
transferability of the class order.

3.4. Class order search algorithm (COSA)

Given the class order transferability measure in Eq. (5), the
problem to find the optimal class order can be formulated as:

4 Here, we simply add MD and LED. Since MD and LED can have different mag-
nitudes, it would be better to assign different weights when adding them.
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argmin Yiot Ljey,, min d(i j)
1 sens -1 e
s.t. VCVp1 (1=2t=<T-1) (6)

=tk (1=t=T)

Note that Yr is fixed, which is the group of all classes in the
dataset. If we know the previous class groups )y,..., YVr_1, the
class order can be uniquely determined.” Since there are multiple
variables of class groups ): (t €1,...,T) that are mutually con-
strained and lead to numerous combinations, the global optimum
is intractable. Inspired by the fact that the final class group Yy is
fixed, we can take a reverse greedy search which is to iteratively
determine the optimal ); given Y, 1:

argmin > ey, Min d(, j)
Ve o iEy[
St VeCVyr (I<t<T-1) )

[Ve|=tK (1<t<T)

Interestingly, such a formulation is almost the same as the ob-
jective of k-medoid [40], which is a clustering method similar to
k-means but chooses actual points as centers. The centroids solved
by k-medoids are exactly the optimal or at least near-optimal )
for Eq. (7).

Note that when T =2, Eq. (6) degenerates into Eq. (7) and
the reverse greedy search gives the global optimum. However,
when T > 2, the reverse greedy search only yields a local optimum
of Eq. (6). For those interested in finding a solution closer to the
global optimum when T > 2, a beam search [41] can be employed.
However, in our experiments, we find that the solution of the re-
verse greedy search is good enough, and we do not visit other al-
gorithms in this work and leave it for future works.

4. Experiments
4.1. Experimental setup

Methods We compare mainstream episodic memory-based CIL
methods iCaRL [14], End-to-End Incremental Learning (EEIL) [15],
Large Scale Incremental Learning (LSIL) [16], IL2M [17], Weight
Aligning (WA) [42], post-scaling [19]. The implementation de-
tails are in the supplementary material. The source code is avail-
able at https://github.com/TonyPod/RethinkingClassOrder and http:
[/viplict.ac.cn/zygx/dm)/.

Datasets We use two datasets Group ImageNet and Group
iNaturalist. Group ImageNet is a 100-class subset of ImageNet
1K [43] introduced by He et al. [19]. It covers 10 superclasses and
each superclass has exactly 10 classes. Similar to Group ImageNet,
Group iNaturalist is a 81-class subset of iNaturalist [44] that cov-
ers 9 superclasses and each superclass has exactly 9 classes. The
superclasses in the two datasets are shown in Fig. 2. The image
resolution is 64 x 64 for both datasets. More details of these two
datasets are in the supplementary material.

Evaluation protocol As for the incremental protocol, we use
20 x 5 to imply that there are 5 class increments and each class
increment adds 20 new classes. Unless otherwise specified, we use
10 x 10 for Group ImageNet and 9 x 9 for Group iNaturalist. Note
that even or group is a type of class order that can have differ-
ent actual class orders by random shuffling. We report the ac-
curacies of different methods in the final incremental phase for
different class orders. To reduce the randomness of a single run,
the reported results are averaged over 5 different actual orders of
the corresponding type. For our searched class order, since it is
uniquely determined, we do not average the results over 5 differ-
ent orders as even or group does.

5 The order of classes inside a class group is unimportant.
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4.2. Class orders do matter in CIL

The final classification accuracies of recent CIL methods under
two class orders even and group on Group ImageNet are shown
in Table 1. From the results, it can be seen that even almost con-
stantly outperforms group for different incremental protocols. Also,
if there are more class increments, the superiority of even is more
obvious (“10 x 10” vs. “50 x 2"). In the supplementary material,
we display more results on Group iNaturalist and the results via
different hyper-parameters on Group ImageNetwhere we still have
the conclusion that even almost consistently outperforms group.
These results are reminiscent of the phenomenon from psychology
mentioned in Section 1 that interleaved learning (i.e. ABAB) is bet-
ter than blocked learning (i.e. AABB), where the class order of even
is “dog-1, fish-1, ..., bird-1, dog-2, fish-2, ..., bird-2, ... ” similar to
the pattern “ABAB” and group is “dog-1, ..., dog-10, fish-1, ..., fish-
10, ... ” similar to the pattern “AABB”. In Section 4.5, we provide
further analyses of why these methods favor even.

4.3. Relationship with transferability

In Section 3.3, we have defined transferability measures for
class orders. Here, we show the estimated transferability of even
and group to see if they are in line with the performance of CIL
methods mentioned in Section 4.2. As for the semantic similar-
ity, it can be easily calculated by using the class labels. As for the
visual similarities, we use two different types of proxy networks
to extract features: supervised (Sup.) and self-supervised (SS). The
supervised network is trained on images of all classes and corre-
sponding labels in the dataset, whereas the self-supervised net-
work is only trained on images of all classes via the simple proxy
task of rotation prediction [45]. The estimated transferability on
Group ImageNet is summarized in Table 2. Note that the estimated
transferability based on different distances are non-comparable—
Only the estimated transferability of different class orders using
the same feature space and distance function is comparable (i.e.
the values in the same row are comparable). It can be seen that
even generally has higher transferability (i.e. lower distance) than
group for almost all transferability measures and incremental pro-
tocols. Also, such a phenomenon is more obvious when there are
more class increments (“10 x 10" vs. “50 x 2"), which is in line
with the conclusion in Section 4.2 that the superiority of even is
more obvious under these situations. In the supplementary ma-
terial, we show the results on Group iNaturalist and still observe
that even generally has higher transferability. Thus, we connect the
performance under different class orders with the transferability
measures, which lays the foundation for COSA.

4.4. Effectiveness of COSA

In Section 4.2, we show from experiments that even performs
better than group and is among the optimal candidates, thus we
hope that our searched class order can have comparable or higher
transferability than the handcrafted even. In Table 2, we display the
estimated transferability of the class order obtained by COSA (de-
noted as greedy since it takes a greedy search). It can be seen that
for most cases greedy has higher transferability than even, which
verifies the effectiveness of COSA. We recommend that the read-
ers see the visualization of different orders that shows the effec-
tiveness of COSA in the supplementary material. Also, the perfor-
mance of CIL methods under greedy is comparable to or better than
that under even (Table 3), which again verifies the effectiveness of
COSA.

From the table, it can be seen that greedy does not always out-
perform even, and the reasons are two-fold: the reverse greedy
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Group iNaturalist

Actinopterygir
Amphibia
Aves
Mammalia
Animal Reptilia
Mollusca
Arachnida
Insecta

Aquatic Animals*

Fig. 2. Simplified hierarchies of Group ImageNet and Group iNaturalist. The classes in red (i.e. leaf nodes in the hierarchies) are the chosen superclasses, each of which has
10 and 9 subclasses for Group ImageNet and Group iNaturalist respectively. “Aquatic Animals*” means that most of the subclasses are aquatic animals. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1

Classification accuracies (%) of methods with the even and group class order on Group ImageNet. Each result is averaged
by 5 different actual class orders of the corresponding class order type, and we denote the standard deviation. The class
order that leads to the better accuracy for different methods under three incremental protocols is highlighted in bold.

10 x 10 20 x 5 50 x 2
Method

even group even group even group
iCaRL [14] 4147+046 3940 + 1.52 4733+057 4438 £ 047 53.89+040 52.80 + 1.21
EEIL [15] 4579+035 43.69 + 046 54.35+0.21 52.68 £ 0.28  65.20+0.71 64.05 + 0.76
LSIL [16] 4256+135 20.86 + 4.41 5404+054 3694 +3.14 6395+058 61.05+ 1.53
IL2M [17] 3572+067 33.15+082 4275+130 3898 +0.60 54.85+0.77 53.81 +0.79
WA [42] 46641094 4388 +1.06 53.884+:0.64 4987 +1.60 63.44+055 62.82 + 0.65
Post-scaling [19] 4742+044 45.05+ 085 5586+044 52.86+ 090 66.40+0.51 65.49 + 0.76

Table 2

Estimated transferability of our searched class order greedy, even and group on Group ImageNet using different CIL protocols. “Sup./SS” is short

for the supervised/self-supervised feature. The lower, the better.

Transferability 10 x 10 20 x 5 50 x 2
measure based on
greedy even group greedy even group greedy even group

WD (Sup.) 524x10> 525x10°  6.18x10° 4.41x10°  4.55x10®° 5.34x10>° 2.69x10° 2.73x10>  3.13x103
WD (SS) 2.79%10! 2.81x10! 3.38x10! 2.21x10! 2.34x10! 2.99%10! 1.12x10! 1.27x10! 1.48x10!
MD-LED (Sup.) 3.27x10*  337x10*  3.95x10* 2.90x10* 2.88x10*  3.38x10*  1.74x10* 1.72x10*  1.96x10*
MD-LED (SS) 417x102  4.11x10>  4.83x10>  3.42x10*> 3.55x10>  4.28x10%>  2.11x10> 2.07x10®>  2.27x10?
Wu-Palmer 1.00x10"  1.00x10"  1.32x10' 8.45 8.73 1.11x10"  4.90 5.31 6.34

Table 3

Classification accuracies (%) of methods under the searched class orders by COSA (i.e. greedy) based on different transferability
measures on Group ImageNet. The protocol is 10 x 10. We average the accuracies under different greedy in the “average” column.

We list the accuracies under even and group as references.

Searched order based on Reference
Method

WD (Sup.) WD (SS)  MD-LED (Sup.)  MD-LED (SS)  Wu-Palmer  average even group
iCaRL [14] 41.94 42.00 40.38 40.00 40.64 40.99 4147  39.40
EEIL [15] 46.76 46.30 44,72 46.26 45.56 45.92 45.79  43.69
LSIL [16] 39.34 42.78 41.06 39.88 40.68 40.75 4256  20.86
IL2M [17] 35.56 37.12 36.28 35.72 35.94 36.12 3572 33.15
WA [42] 45.90 45.60 45.12 45.96 45.86 45.69 46.64  43.88
Post-scaling [19]  46.74 47.96 46.84 47.78 47.18 47.30 4742  45.05

search in COSA only gives a local optimum when T > 2, mak-
ing the class order a suboptimal one; the transferability may be
not the only factor in determining the performance, which will
be discussed more detailedly in Section 4.6. The results for a
20 x 5/50 x 2 incremental protocol on Group ImageNet and a
9 x 9/27 x 3 incremental protocol on Group iNaturalist are shown
in the supplementary material, which leads to the same conclu-
sion. Also, among these transferability measures, WD generally
gives better classification performance. The reasons are two-fold:
(1) As noted in Footnote 4, MD-LED is implemented by simply
adding MD and LED without weighting factors, which may incur
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errors since these two terms have quite different magnitudes. The
weighting factors should be carefully chosen, which is left for fu-
ture works; (2) The Wu-Palmer distance does not consider image
samples, which may be "less accurate than visual distances that
reflect the actual distribution" as mentioned in Section 3.2.

4.5. Further analyses of why class order matters

The aforementioned analyses of transferability are simply based
on the dataset and are model-independent. Thus, we may hypoth-
esize that for a black-box CIL method, it is more likely to still fa-
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Table 4
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Classification accuracies (%) of ablating the techniques in CIL methods on Group ImageNet. Each model is trained for 70 epochs at each incremental
phase. Each result is averaged over 5 different class orders of the corresponding order type. “w/ distill” means using the distillation loss. “w/ finetune”
means that the new model is fine-tuned from the old one. “Base” is the variant without the two aforementioned techniques. The number inside “()” is
the improvement of accuracy over “Base”. IL2M does not have the distillation loss, thus there is a “/” in certain elements of the table.

Even Group
Method

Base w/ distill w/ finetune w/ both Base w/ distill w/ finetune w/ both
iCaRL [14] 3092  36.60 (+5.68)  37.50 (+6.58) 4147 (+10.55) 3046  3525(+4.79)  34.79 (+433)  39.40 (+8.94)
EEIL [15] 3292 4057 (+7.65)  37.48 (+4.56) 45.79 (+12.87) 3231  38.64 (+6.33) 36.62 (+4.31)  43.69 (+11.38)
LSIL [16] 30.73 3828 (+7.55)  36.40 (+5.67) 42.56 (+11.83) 2241 16.10 (—-6.31)  28.90 (+6.49)  20.86 (—1.55)
IL2M [17] 28.68 |/ 35.72 (+7.04) | 26.56 | 33.15 (+6.59) |
WA [42] 30.00 43.15 (+13.15)  32.44 (+2.44) 46.64 (+16.64) 30.96  40.34 (+9.38)  34.76 (+3.80)  43.88 (+12.92)
Post-scaling [19]  33.44  42.71 (+9.27)  39.14 (+5.70)  47.42 (+13.98) 3231  38.88 (+6.57) 36.48 (+4.17)  45.05 (+12.74)

vor even. However, strictly speaking, the performance under differ-
ent class orders still depends on the characteristics of the learner.
Thus, we offer further analyses to find out what commonalities
make these methods favor even.

Apart from IL2M that does not have the distillation loss, all
other methods share two common techniques that are related to
knowledge transfer: distillation loss that originates in Li and Hoiem
[28] and fine-tuning from the old model instead of training the new
model from scratch. Thus, we ablate these two buildings blocks
from these methods to observe their behavior under even and
group. The results are shown in Table 4. It can be seen that “Base”
of almost all methods under even and group does not differ too
much in performance by comparing with “w/ distill” or “w/ fine-
tune” except LSIL, which indicates that the distillation loss and fine-
tuning are more sensitive to class orders. By scrutinizing the im-
provements of “w/ distill” and “w/ finetune” over “Base”, we find
that the phenomenon that the distillation loss favors even is more
obvious. The reason is that the distillation loss forces the responses
of the samples on the new model to be similar to those on the
old model, which is a kind of review to alleviate forgetting. There-
fore, the choice of the samples is rather important: if the samples
are diverse, all previous classes can be reviewed. Since in even the
samples are spread over all superclasses, it provides a better re-
view of old knowledge than group where samples are concentrated
inside only a few superclasses. Consequently, the distillation loss
may be the important cause of the large performance gap for these
methods under different class orders. Thus, it is recommended that
the form of the distillation loss can be adapted, or the weighting
factor of the distillation loss can be dynamically adjusted based on
the transferability between the previous and next batch of classes.
It may lead to more steady behavior of these methods under dif-
ferent class orders.

4.6. Discussions

Superiority of even. Although we make connections between
the superiority of interleaving learning (i.e. the interleaving ef-
fect [2]) in psychology (Section 1) and the superiority of even in
CIL (Section 4.2), it should be noted that experiments of spacing
effect are mainly verified via recall or relearning, instead of recogni-
tion as in CIL. Therefore, the conclusions from human learning and
machine learning may not be 100% consistent due to a difference
in the experimental setting. However, we still encourage further
collaborations between these two fields, which would bring more
insights.

Transferability and performance. Although we draw connections
between transferability and performance in CIL, we should note
that too much transferability may also lead to a performance drop.
For example, a new class Alaskan Malamute and an old class husky
are two visually similar dogs. Thus, there is higher transferability
between these two classes, but they are more likely to be con-
fused by the model. This phenomenon indicates that transferability
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is probably not the only factor to reflect the classification perfor-
mance, which requires more studies. In the supplementary mate-
rial, we further discuss the potential applications of the proposed
transferability measures and COSA.

5. Conclusion

In this paper, we revisit class orders in Class Incremental Learn-
ing (CIL). Specifically, we show from experiments that mainstream
episodic memory-based CIL methods favor even class orders, which
is in line with the superiority of interleaved learning in psychol-
ogy. Then, we draw connections between the performance of these
methods with our proposed transferability measures defined on
class orders, where higher transferability is correlated with better
performance. The transferability measures can also be indicators
used to search for the optimal class order by finding which one has
the highest transferability. Future works are further improving the
transferability measures and applying the class order search algo-
rithm to real-world scenarios mentioned in the discussion section.
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